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Classification (4348

Naoaki Okazaki
okazaki at ecel.tohoku.ac.|p
http://www.chokkan.org/

http://twitter.com/#!/chokkanorqg
http://www.cl.ecei.tohoku.ac.ip/index.php?InformationCommunicationT
heory
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Spam mall

r@ I'm interested in your profile - Mozilla Thunderbird l — | [=] b-'l'—H1
F7ILE) R|E(E) FTR(V) BEG) Avt—(M) YT} ~LT(H)
S BE - #FE R TFELAE | ®5T-
& EE 4 2BICEE - = TE & 7-N10 @ EBEI—OEMTD @ Bl
=i Marquis Winn <automail@interloper.com=
= I'm interested in your profile 2011/07/12 19:04
535c Naoaki Okazaki ZOATASIE -
Hello!
| am Victoriya, | am 27 y.o.
| search for boy-friend.

Ny photos and mew message for you here:

-
2016-10-13

http://sonya201010.com.ua/?message from=Victoriya
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How many spams do you get (per day)?

- My office address: okazaki at ecei.tohoku.ac.]p

- 10 spams out of 80 emails
- 5 filtered automatically out of 10 spams

- My private address (leaked by a company)
- 40 spams out of 40 emails
- 10 filtered out of 40 spams

Spam (Monty Python)
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Symantec’s survey

- May 2011 Messagelabs Intelligence Report
« 75.8% of email in the world was spam (72.3% in Japan)
- 1in 1.32 emails was spam
- http://www.symanteccloud.com/mlireport/MLI_2011 05_May FINAL-en.pdf

Spam Rate

Russian
82.2% Federation
Hungary
75 8(y PN Saudi Arabia
. 0
LIUNECS Luxembourg

EiE A Wholesale [EAECY 1-250
W5 Automotive [EX:EE 251-500

) ) ARy 501-1000
Marketing/Media

TR 1001-1500
Education FCXCA 1501-2500

Last Month: 72.9% China Manufacturing (RN 2501+
Six Month Avg.: 78.3% Top 5 Geographies Top 5 Verticals By Horizontal

2005 2006 2007 2008 2009 2010 2011

May 2011
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Rule-based spam filtering

- Design heuristic rules to detect spams

def 1s_spam(text):
iIT text.find("my photo attached®) 1= -1:
return True
1T text.find("very cheap drugs®) = -1:
return True

- - - Difficult to scale to a wide-variety of spams
return False

- Pros - Cons
- Good initial cost-performance - High maintenance cost
- Understandable internals - Dependence to the domain
- Configurable internals - Artisanal skill
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Supervised spam filtering (with retraining)

Discard spam emails

C|35W7

Spam folder

€~ “ Append new instances

\_ lraining data  /
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Supervised approach

- Learn from examples (supervision data)
- Spam (positive) and non-spam (negative) emails
- Acquire rules from the supervision data

- Rules (features) are usually induced from the supervision data
- e.g., h-grams of mail contents, mail headers

- (Deliberately) over-generate features, regardless of effectiveness
- Weight rules in terms of their contribution to the task

- Hand-crafted rules for the domain are unnecessary
(except for feature engineering)

- This approach work surprisingly well if we have a large
supervision data
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Classification and NLP

- Many NLP problems can be formalized as classification!

In March 2005, the New York Times acquired About, Inc.

IN NNP CD DT NNP NNP NNP VBD NNP NNP
NP NP VP NP
TEMP ORG ORG
who WhV
when acquire
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Today’s topic

- Linear binary classifier

- Feature extraction
- Tokenization, stop words, stemming, feature extraction

- Training — perceptron

- Training — logistic regression (using SGD)
- Other formalizations

- Evaluation

- Implementations and experiments
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Take home messages

- Atext is represented by features (as a vector)

- Linear classifier simply computes the linear combination
of feature weights as a score

- Training a linear classifier is very straightforward

- In principle, if the classifier fails with an instance, we update feature
weights such that the classifier can classify the instance next time!

- Two kinds of classification failures that have trade-offs:
- False positives decrease precision
- False negatives decrease recall
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Brief Introduction of
Linear (Binary) Classifier
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Linear (binary) classifier (&7 —{E % $82%)

- Input: feature vector x € R™ 1 (ifa(x) =w-x>0)
- Output: prediction 9 € {0,1} |Y = {0 (otherwise)

- Using: weight vector w € R™ (m: number of dimension)

- More concrete example: Feature extraction

- Feature space (m = 6): (darling, honey, my,llove, photo, attached)

- Input: “Hi darling, my photo in attached file” - x=(101011)
d — |
6

a(x):W'x:zwixi:@1+W2x2+ X3+W4X4+ 5+

- Output: the sign of a(x) Contribution of each feature
(positive high: likely to yield y = 1)

- Training: to find w such that it fits well to the training data
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Discrimination plane (4> & 3 1)

- Draw the region of x suchthat y =1

T
w-x >0 < (|angle between w and x| < E)

Discrimination plane
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Two Important questions

- Feature extraction (feature engineering)
- Represent an input text with a feature vector

- Using a number of NLP techniques: tokenization, stop-word,
stemming, part-of-speech tagging, parsing, dictionary lookup, etc.

- Important: a linear model can see a text only through features!

- Training
- Find a weight vector such that it fits well to the training data
- The classifier is expected to re-predict all training instances correctly
- Fitness (formalizations; loss functions)
- Logistic Regression, Support Vector Machine (SVM), ...
- Finding (training algorithms)
- Perceptron, Gradient Descent, Stochastic Gradient Descent, ...
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Feature Extraction

Representing a text with an input vector x
Preparing a space of feature vectors
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Tokenization

- Split a sentence into a sequence of tokens (words)

- In English, tokens are separated by whitespaces (e.g.,
space, punctuation characters)

- Sophisticated methods (e.g., word segmentation, morphological
analysis) are necessary for Japanese and Chinese

- Token boundaries are not obvious in these languages

- Penn Treebank tokenization
« http://www.cis.upenn.edu/~treebank/tokenization.html

/Hi darling, my photo in attached file
1 Tokenize and lowercase
[ﬂ'hi)), Cfdar,ling)J, ((,)J, ﬂ'my.’), ﬂ'photo)J, ﬂ'in)J, ((attached.”, ('(_File)J]

-

/
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Stop words

- Remove words that are irrelevant to the processing

- E.g., http://www.textfixer.com/resources/common-english-words.txt

« a,able,about,across,after,all,almost,also,am,among,an,and,any,are,as,at,be,beca
use,been,but,by,can,cannot,could,dear,did,do,does,either,else,ever,every,for,from
,get,got,had,has,have,he,her,hers,him,his,how,however,i,if,in,into,is,it,its,just,least
Jlet,like,likely,may,me,might,most,must,my,neither,no,nor,not,of,off,often,on,only,o
r,other,our,own,rather,said,say,says,she,should,since,so,some,than,that,the,their,t
hem,then,there,these,they,this,tis,to,too,twas,us,wants,was,we,were,what,when,
where,which,while,who,whom,why,will,with,would,yet,you,your

- Highly domain dependent
- “my” in the phrase “my photo” may be effective to spam filtering
- This lecture employs punctuations and prepositions as stop words

( eer s : : . )
[“hl’,, “dar‘llng,,, ('(,.U, “'my).’, “'photo.”, "fanJ, ('(attached).’, “'_Flle.”]

1 Remove punctuations and prepositions

[“hi”, “darling”, “my”, “photo”, “attached”, “file”]
N Y
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Stemming

- Reducing inflected and derived words to their stems
- Stems are not identical to (morphological) base forms

- It is sufficient for an algorithm to map related words into the same
string, regardless of its morphological validity

- Porter Stemming Algorithm (Porter, 1980)
« http://tartarus.org/~martin/PorterStemmer/index.html
« http://pypi.python.org/pypi/stemming/1.0

- Not perfect: “viruses” — “virus”, “virus” — “viru”

/[“hi”, “darling”, “my”, “photo”, “attached”, “file”]

1 Porter Stemming Algorithm
[ﬂ'hi)), ﬂ’dar,l)), (fmyJ), Cfphoto))) “‘attaChJJ, (‘(_FileJ)]

-
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Feature extraction

- Various characteristics, depending on the target task
- Word n-grams (unigram, bigram, tri-gram, ...), prefixes/postfixes
- Part-of-speech tags, predicate arguments, dependency edges
- Dictionary matching (e.g., predefined ‘black’ words in spams)
- Conditions (e.g., whether the email has a link to a black URL)
- Others (e.g., the sender of the mail, the IP address of the sender)

- We may use (combinations of) multiple characteristics
- E.g., unigram and part-of-speech tag: “photo/NN”

/[ﬂ'hiJJ) ﬂ’dar\l)), ﬂ’myJ), ((pho.to)), “attaCh”, ﬂ'_FileJ)]

1 Word bigrams as features

\_

~

[“hi _darl”, “darl _my”, “my photo”, “photo_attach”, “attach file”]

)

2016-10-13 Information Communication Theory (1535 ZES)




Practical considerations

- Bias term
- Include a feature that is always 1 (without any condition)
- The corresponding feature weight presents a threshold

a'(x) = Zwlxl + woXxo = s(x) +wy >0 & s(x) > —wy
=1 Always 1 Bias term Threshold

- Feature space and number of dimensions (m)
- We seldom determine the number of dimensions in advance

- Instead, we do:
- define an algorithm for extracting features from an instance
- extract and enumerate features from all instances in the training data

« m = (the number of distinct features extracted from the training data)
- A feature vector extracted from an instance is sparse

- A few non-zero elements in the m dimension
- We often use a list of non-zero elements and their values
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Example of feature extraction

- Training data (consisting of two instances)

o +1 Hi darling, my photo in attached file y = 0 is often
4 1 Hi Mark, Kyoto photo in attached file represented by -1

- Feature representations (word bi-grams)
- +1 hi_darl darl_my my_photo photo_attach attach_file
- -1 hi_mark mark_kyoto kyoto photo photo_attach attach_file
- Feature space
- 1: 1 (bias), 2: hi_darl, 3: darl_my, 4: my_photo, 5: photo_attach,
- 6: attach_file, 7: hi_mark, 8: mark_kyoto, 9: kyoto _photo
- Feature vectors
- (x,y)=((111111000),1)
- (x,y)=((100011111),0)
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Training —
Perceptron

Finding w such that it fits well to the training data
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Training

- We have a training data consisting of N instances:

o D = {(x1;3’1); . (xN»YN)} x;: the i-th element of the vector x
x,. the n-th instance in the training data

- Generalization (;N.1b): if a weight vector w predicts training
Instances correctly, it will work for unknown instances

- This is an assumption; the weight vector w predicting training
Instances perfectly does not necessarily perform the best for
unknown instances — over-fitting GB=F &)

- Find the weight vector w such that it can predicts training
Instances as correctly as possible
- Ideally, y,, = y,, for all n € [1, N] in the training data
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Perceptron (Rosenblatt, 1957)

W— W+ X,
else:
W—Ww-—X,

1. w;=0forallie][l,m]

2. Repeat:

3. (x,,, V) < Random sample from the training data D
4.y e predict(w,xp,) < (1 (fw-x,>0)
5. if y # vy, then: Y= {O (otherwise)
6. If y, =1 then:

7.

8.

9.

10. Until convergence (e.g., until no instance updates w)
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How perceptron algorithm works

- Suppose that the current model w misclassifies (x,, y,,)
- If y, = 1 then:
- Update the weight vector w' «— w + x,
- If we classify x,, again with the updated weights w' :
W x,=(WH+x,) X, =W-X,+X,, X, =W:X,

- If y, = 0 then:
- Update the weight vector w’ «— w — x,
- If we classify x,, again with the updated weights w' :
W X, =(W—2X,) Xy =W X;, — Xy Xy < W X,
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Exercise 1: Update w using perceptron

- Training instances:
* (x,v,)=((111111000),1) « Hidarling, my photo in attached file
* (x5,v,)=((100011111),0) < Hi Mark, Kyoto photo in attached file
- Initialization
-w=(0 0 0 0 0 0 0 0 0)
- Then?
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Answer 1: Update w using perceptron
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Python implementation (perceptron.py)

def update(w, X, y):

a = 0.

for 1 in range(len(w)):
a += w[i] * x[i]

ifa*y<=0: .
for i in range(len(w)): Update rule is very simple if we define

! { P y P
Wil =y =il negative as -1 (instead of 0)

def classify(w, Xx):
a = 0.
for 1 in range(len(w)):
a += w[i] * x[i]
return (0. < a)

iIf _name_ == " main__
w=[0.] * 9
D =¢(
(1,

update(w, D[O][O], DLOI[11)
update(w, D[11[0], DL11[11)
print classifty(w, DLO][O]) $ python perceptron.py
print classifty(w, D[1]1[0]) True
print w False
[0.0, 1.0, 1.0, 1.0, 0.0, 0.0, -1.0, -1.0, -1.0]
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Practical considerations

- Perceptron algorithm can learn a training instance at a
time (online training)
- Suitable for spam filtering, which constantly receives new instances

- Perceptron algorithm does not converge if the training set
IS not linearly separable (no discrimination plane exists)

- We often terminate the algorithm after:
- A fixed number of iterations (tuned by a development set)
- Number of misclassification instances does not decrease

- Perceptron algorithm often leads to poor generalization

- We often use ‘averaging’ of weight vectors at each iteration for
better generalization (Freund and Schapire, 1999)
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Training —
Logistic Regression

Section 6.6.2 Logistic Regression (P231-P234)
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Logistic regression (A X7y 7[B

I

- A linear binary classifier (the same as perceptron)
- Input: feature vector x € R™ ~ {1 (ifa(x) =w-x > 0)

- Output: prediction y € {0,1} Y =
- Using: weight vector w € R™

- In addition, conditional probability P(y|x) is defined by,

P(y =1[x) =

1+ e WwWx
Py=0|x)=1-PQ =1|x) =

—-w-X

1+ e Wx

- Decision rule to classify x to positive (y = 1)
1 1

0 (otherwise)
(m: number of dimension) !

the same

P(y=1|x) > 0.5 <=>1+e_w,x>— S w-x>0

2

2016-10-13 Information Communication Theory ({E¥R{=ZEF)




Sigmoid function (%7 &4 FE8 %K)

- Sigmoid function a(a)1 /F

- This function maps:

- Score [—o0, 4] to
probability [0, 1]

o)
U

d
- In an implementation, 0
_ -6 -4 =2 0 2 4 6
avoid the overflow
problem when a is Symmetry point at (0, 0.5)
negative lim o(a) =0 lim o(a) =1
a——o0o a— oo

http://en.wikipedia.org/wiki/Sigmoid function
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Interpreting logistic regression

- Compute the score (inner product) a = w - x

- Apply the sigmoid function to map the score a into a
probability value, P(y = 1|x) = o(a) = o(w - x)

|
L
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(Instance-wise) log-likelihood (3£ E)

- Given a training instance (x,,, y,,), we compute the
iInstance-wise log-likelinood #,, to assess the fithess,

_| logpn  (fy,=1) _
tn = {log(l Zp) (ify, = 0y = Yn108Pn + (1= yn)log(l = pn),

anP(y=1|xn)= A =W Xy

1+ e %n

- Maximum Likelihood Estimation: we would like to find the
weight vector w such that:

N
maximize z 12
n=1
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Check your understandings with example

-Modelw=(0 1 1 1 0 0 -1 -1 -1)
*x;=(111111000) « Hidarling, my photo in attached file

L~ 0953
1+exp(-3)

- Suppose that this instance is annotated as positive (y; = 1)
- l; =logp; = —0.0486 — 0 (maximize)

o a1=W-x1=3,p1=

X, =(100011111) « HiMark, Kyoto photo in attached file

l —0.047
1+exp(+3)

anZW-xzz—S,pzz

- Suppose that this instance is annotated as negative (y, = 0)
- l, =log(1 —p,) =—-0.0486 — 0 (maximize)
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| | Ascent o
Stochastic Gradient Deseent for training

- Optimization problem: Maximum Likelihood Estimation
- maximize Y.N_, ¢, (fortunately, this objective is concave)

- Stochastic Gradient Descent (SGD) (eI A E[E T %)

- Compute the gradient for an instance (batch size = 1): n

ow

- Update parameters to the steepest direction

1. w; =0foralli € [1,m] "

2. Fort«1toT: aznnt

3. N, — 1/t w

4. (X, V) < Random sample from D

5. we—w+1n; %’V" / \>w
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Exercise 2. compute the gradient

0¢n, Op, dan

- Compute the gradients op. 30w’ and prove:
0¢, 04, 0p,0a, ( )
ow _ op,da, ow _ on Pntin

- where,

£n = yplogp, + (1 —y,) log(1 —py),

_ 1
Pn =1 e=a’
a=w-x,
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Answer 2: compute the gradients
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Interpreting the update formula

- The update formula:

al,
W(_W_l'nta_w_w_l'nt(yn_pn)xn

- If y,, = p,,, NO need for updating w

- If y, =1 and p,, < 1, increase the weight w by the amount
of the error (y,, — p,,)

- If y, = 0 and 0 < p,,, decrease the weight w by the
amount of the error (y,, — p,,)
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Python implementation (logress.py)

import math
import random

def train(w, D, T):
for t iIn range(l, T+1):
X, Y = random.choice(D)

a = sum(w[i] * x[1] for 1 in range(len(W))]) # alx)=w-x
g=y - (. /7 (1. + math.exp(-a))) i1f -100. < a else y #g=y—p
eta = 1. / t
for 1 1In range(len(w)): #we—w+ngx
wli] += eta * g * x[1] #
def prob(x):
a = sum(w[i] * x[1] for 1 in range(len(wW))]) # alx)=w-x
return 1. /7 (1 + math.exp(-a)) if -100. < a else 0. # p=1/1+ exp(a))
if _ _name_ == " main__ ":
w=[0.] * 9
D =( $ python logpress.py
«(QG., 1, 1,1, 1, 1, 0, 0, 0, D, 0.93786130942 0.0601874607952
(1, 0, 0,0, 1, 1, 1, 1, 1), 0), [-0.0037759046835663321, ©.90852032090533386,
) 0.90852032090533386, 0.90852032090533386,
train(w, D, 10000) -0.0037759046835663321, -0.0037759046835663321,
print prob(D[0][0]), prob(P[11[0]) -0.91229622558889756, -0.91229622558889756,

print w -0.91229622558889756 ]
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Practical considerations

- MLE often leads to overfitting
. |w| - o as ¥N_. £. - 0 when the training data is linearly separable
- Subject to be affected by noises in the training data

- Regularization (1IEHI{E) (MAP estimation)
- We introduce a penalty term when w becomes large
- E.g., MAP with L2 regularization: maximize (33_, ¢,, — C|w|?)
- C is the parameter to control the trade-off between over/under fitting

- Stopping criterion
- Detecting the convergence of log-likelihood improvements
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Other classification models

- Extensions of logistic regression

- Maximum Entropy Modeling (MaxEnt) (R KT rAOE—%)
- Multi-class logistic regression

- Conditional Random Fields (CRFs) (&&= R15)
- Predict a sequence of labels for a given sequence

- Other formalizations
- Support Vector Machine (SVM) (B7/R—kRIKLTI—L)
- SVM with linear kernel = linear classifier
Naive Bayes
Neural Network
Decision Tree
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Evaluation
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Accuracy, precision, and recall

Contingency table

I R

Predicted + a (true positive) b (false positive)
Predicted - c (false negative) d (true negative)
- Accuracy (F/E): a:;:ir - (correctness about positives and negatives)
- Precision (& ). p = a;:b (correctness about positives)
- Recall (BHE). r = — (coverage about positives)
- F1-score: % (harmonic mean of precision and recall)
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Precision — recall curve

- Precision/recall tradeoff
- If we increase the precision of a system, its recall decreases

- It is not easy to improve both precision and recall
- We sometimes prioritize either precision or recall, depending on the task
- Spam filtering: precision is important

- How can we control the tradeoff of a
linear binary classifier?
- Increasing the threshold: improves precision
- Decreasing the threshold: improves recall

better
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Holdout evaluation

- Use ‘heldout’ data set for evaluation

N

d\

o

.
.

.
.

J

Training set
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Separated

Test set
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N-fold cross validation (32 Z4& )

- For example (5-fold cross validation)

Data set

‘ Split into 5 groups

test

01— @ —

test

01— @ —

test

=] — &8 —

COCOE
COCCC
COCECC
CCECOC
L
|
B
|
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Standard experiment procedure

- Three groups of data sets
- Training set: used for training
- Test set: used for evaluating the trained model
- Development set: another test set for tuning parameters of training
- This experimental setting is useful for comparing different systems

- Two groups of data sets
- Training set: used for N-fold cross validation
- Development set: a test set for tuning parameters of training
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